Jeu de taquin and a monodromy problem for Wronskians of polynomials

نویسنده

  • Kevin Purbhoo
چکیده

The Wronskian associates to d linearly independent polynomials of degree at most n, a non-zero polynomial of degree at most d(n−d). This can be viewed as giving a flat, finite morphism from the Grassmannian Gr(d, n) to projective space of the same dimension. In this paper, we study the monodromy groupoid of this map. When the roots of the Wronskian are real, we show that the monodromy is combinatorially encoded by Schützenberger’s jeu de taquin; hence we obtain new geometric interpretations and proofs of a number of results from jeu de taquin theory, including the Littlewood-Richardson rule.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monodromy and K-theory of Schubert Curves via Generalized Jeu de Taquin

Schubert curves are the spaces of solutions to certain one-dimensional Schubert problems involving žags osculating the rational normal curve. e real locus of a Schubert curve is known to be a natural covering space of RP1, so its real geometry is fully characterized by the monodromy of the cover. It is also possible, using K-theoretic Schubert calculus, to relate the real locus to the overall (...

متن کامل

Wronskians, Cyclic Group Actions, and Ribbon Tableaux

The Wronski map is a finite, PGL2(C)-equivariant morphism from the Grassmannian Gr(d, n) to a projective space (the projectivization of a vector space of polynomials). We consider the following problem. If Cr ⊂ PGL2(C) is a cyclic subgroup of order r, how may Cr-fixed points are in the fibre of the Wronski map over a Cr-fixed point in the base? In this paper, we compute a general answer in term...

متن کامل

Matrices connected with Brauer's centralizer algebras

In a 1989 paper [HW1], Hanlon and Wales showed that the algebra structure of the Brauer Centralizer Algebra A f is completely determined by the ranks of certain combinatorially defined square matrices Z, whose entries are polynomials in the parameter x. We consider a set of matrices M found by Jockusch that have a similar combinatorial description. These new matrices can be obtained from the or...

متن کامل

Schensted-Type correspondence, Plactic Monoid and Jeu de Taquin for type Cn

We use Kashiwara’s theory of crystal bases to study the plactic monoid for Uq(sp2n). Then we describe the corresponding insertion and sliding algorithms. The sliding algorithm is essentially the symplectic Jeu de Taquin defined by Sheats and our construction gives the proof of its compatibility with plactic relations.

متن کامل

A bijective proof of the hook-content formula for super Schur functions and a modified jeu de taquin

A bijective proof of the product formula for the principal specialization of super Schur functions (also called hook Schur functions) is given using the combinatorial description of super Schur functions in terms of certain tableaux due to Berele and Regev. Our bijective proof is based on the Hillman–Grassl algorithm and a modified version of Schützenberger’s jeu de taquin. We then explore the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009